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1. Introduction

Recently increasing attention has been paid to the non-Gaussian proper-
ties of small scales in turbulent lows as a manifestation of intermittency.!
Past numerical studies were, however, almost always restricted to simula-
tions with external forces or to res'lts after several eddy-turn-over times.
This is because the equilibrium shapes of the Probability Density Functions
(PDFs) of velocity and velocity gradients were the main concern (Kerr, 1985;
Yamamoto and Hosokawa, 1988; She, Jackson and Orszag, 1988; Kida and
Murakami, 1989; Métais and Herring, 1989; Vincent and Meneguzzi, 1991).

As a thecretical tool to analyze non-Gaussianity, Kraichnan and his co-
workers developed a systemetic technique called mapping closure. The work-
ing hypothesis of the technique is that the shape of PDF is determined by a
balance between advection which produces active small eddies and dissipa-
tion which wipes them out. As vhese processes have different time scales (i.e..
dissipation becomes effective later than advection for fields initially at large
scales), different shapes of PDF arc possible as a result of combinatlons of
the processes. Accurate statistical calculations for decaying turbulence with
the tnitial Gaussian distribution is vital, in the examination of the hypoth-
osis,

" ‘Che reader iy referred to a recent query about the prevalence of sxponentials as
non-Gaussian addrenaed by Narasimha and discuseed by Herring in ™ Whither Turbulence?
Turbulence at the Cmaymads” oi. Lumley, 1.I. (Springer, 1989).
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Fig. 1. Development of the kinetic energy spectrum. The initial spectrum is
E(k,0) = 0.008k%exp(—0.088k2?), and others are plotted with a time interval of
02uptot=20.

In thus article, we shall present numerical results on the development of
the shape of PDFs of the velocity components and transverse velocity gra-
dients of Navier-Stokes turbulence (section 2). The possibility of controlling
intermitteacy will be discussed in section 3. We used 1 hree-dimensional pseu-
dnspectral simulations with 642 periodic grid points. To get clean statistical
information, averages over a large number of ensembles of different initial
conditions satisfying the same energy spectrum were taken.

2. Numerical l{esults

First we shall see the time scale difference in various quantities such as
developments of the energy spectrurn. dissipation rate of energy. skewness
factor of longitudinal velocity gradients, and kurtosis factor of transverse
velocity gradients.

The development of the energy spectrum is shown In Fig.1. The initial
spectrim is

E(k.0)  0.008kezp( —0.088k7) . (1)

and subsequent, F(K, £) are plotted with a time interval of 0.2 up tot 2.0
(T'he time is not normalized by the eddy-turnover t'me of about 0.2.) The
initizal Taylor's microsenle Reyvnolds number is about 40, The spectrum first
changoes to a sell-similnr stage and then decays uniformly, with the transition
to sell-sitnilarity finished around ¢ -2 0.4,
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Fig. 2. The total kinetic energy E, = ,}E |v(k)|? and the energy dissipation rate,
k

= —4 E,o as functions of time.
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Fig. 3. The skewness factor of longitudinal velocity gradients. (a) ensemble average
of 100 realizations; (b) sing!a realization.
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Fig. 4. The kurtosis factor of transverse velocity gradients.

In Fig. 2 we plot the total kinetic energy,

1
Ewt = 5 3 Iv(k)? (2)
“ k
and the energy dissipation rate,
d

as functions of time. The energy dissipation rate (which is proportional to
the enstrophy for isotropic turbulence) has a maximum value at ¢ ~ 0.4, and
this time coincides with that of the appearance of the self-similar stage in
the energy spectrum development.

The following relaticnship is known for the enstrophy D (Lesieur 1987),

dD (98 . an
I : mS(t)l) - 2UP(£) R (4)
where D(t) is the enstrophy,
D(t) = /‘ KLk )k | (5)
0

S(1) is the skewness fnetor of longitudinal veloeity gradients,

((u')u,/:'):r.l)"')

S o= g
) ((hey /O, )24 2

(i:1.2.%) . (6)
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Fig. 5. PDFs of velocity components (a) t=0.0, (b) t=0.1, (c) t=0.5, (d) t=1.0.

{no summation rule is adopted), and P(t) is the palinstrophy,
F(e) = / KSE(k.t)dk . (7)
0

The initial slight decrease in £(t) is due to the viscous term in (4) because
S(t) is zero for the Gaussian distribution. The nonlinear term then becomes
gradually effective, and £(t) (or D(t)) increases until the viscous term begins
to be dominant again because of the energy transfer to smaller scales.

If vis 0 and S(t) is positive (-definite), the enstrophy will blow up at
a certain finite time, giving a real-time singularity for this case. When v is
not zero, on the other hand, the enstrophy will be de-singularized. and we
might have a conjugate pair of complex-time singularities.

The skewness factor of the three longitudinal velocity gradients are plot-
ted from the average of 100 realizations (a), and a single realization (b). in
Fig. 3. The difference between (a) and (b) clearly shows that the ensemble
average is needed Lo extract an isotropic feature of the skewness factor from
the data to enable us to discuss a possible enstrophy blow-up by virtue of
(4).

Figure 3 shows a sizable overshoot around ¢ ~ 0.22, and a stable stage
appears after that which agrees with the theoretieal predictions (for example,
the E.ID Q.N.M. theory hy André and Lesieur, 1977), and also with previous
simulations (for example. Brachet ot al., 1983).

There is a time difference, albeit small, between the penk of the dissipa-
tion rate of energy and that of the skewness.? Intuitively speaking. S(1) is

s wan pomnted ot by RM Kerr
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Fig. 6. PDFs of the transverse velocity gradients (a) t=0.0, (b) t=0.1, (c) t=0.5,
(d) t=1.0.

an indicator of the energy transfer, and the enstrophy is produced by the
energy transfer. Apparently, it seems natural that S(t) (cause) has an earlier
peak than £(t) (effect), but the true mechanism is still an unsolved problem.

Figure 4 shows the kurtosis factor of transverse velocity gradients K(¢),

((Bui/z;)*)
((Oui/0z;)2)?

which is another crucial quantity indicating a departure from Gaussianity,
l.e.. intermittency. The plot is an average kurtosis of 6 different kinds of
transverse gradient, and each is obtained as an ensemble average of 10 real-
izatlons of initial conditions.

Starting from 3.0, characteristic for the Gaussian distribution, K(t) in-
creases rapidly and maximizes at ¢t ~ 0.4, then decreases slowly to a sta-
tionary value. The time for the maximum kurtosis colncides with that for
the dissipation rate, therefore the biggest (spatial) intermittency appears
when the enstrophy becomes m.aximum. This suggests that if the maximum
cnstrophy is associnted with a complex-time singularity so Is the maximum
kurtosis factor. Thus the coincldence of the peak times implies a crucial roll
of ecomplex-time singularities in spatial intermittency as well as in temporal
intermittency, which was proposed a deeade ago by Frisch and Morf (1981).

PDFEFs of veloeity components and their transverse gradients are shown in
IFFigs. 5 and 6. The data of the PDFs were sampled at v 0.0, 0.1, 0.5, 1.0, and
accurmilated from 100 realizations. 'To get higher acenracy, we combived the
three components of velocity and the six components of transverse gradients

K(t) = (i#7:1,2,3), (8)
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Fig. 9. Effect of helicity input on the kurtosis factor of transverse velocity gradients.

together, respectively, and folded at the vertical axis because both kinds of
PDF's should be symmetric with this axis.

The PDFs of velocity components show thinner shapes than the Gaussian
distribution (dashed line) in Fig. 5. This small inward defect from Gaus-
sian was already reported in Fig. 4 of Vincent and Meneguzzi (1991). But
they ignored this defect to conclude that the PDF of velocity components
is close enough to Gaussian, which is well-known from many experiments
(for example, Van Atta and Chen, 1968). The result in Fig. 5 suggests a
reconsideration of the Gaussianity of velocity components in turbulence.?

The PDF's of transverse gradients show exponential-like tails, as already
reported from both experiments (Van Atta and Chen, 1970; Castaing, Gagne
and Hopfinger, 1990) and simulations (Yamamoto and Hosokawa, 1988; She,
Jackson and Orszag, 1988; Kida and Murakami, 1989; Métais and Herring,
1989; Vincent and Meneguzzi, 1991) (Fig. 6). The departure from Gaussian
is already saturated at ¢ = 0.5. From Fig. 4, the saturation time seems to be
t ~ 0.4 when K(t) obtains the maximum value. Though some work has becn
done to elucidate the exponential-like tails (Kralchnan, 1991; She, 1991),
treatment of non-local quantities like the pressure or its gradient remains
open to conjecture. Figure 7 shows a typical PDF of the pressure of Navier-
Stokes turbulence. The asymmetric feature of the pressure PDFF has been

1 In his text book. ( The thenry of homogeneous turbulence, Cambridge University Prens,
1953, p. 170), Batchelor cited an experimental result by R.W. Stewart on the kurtosis
factor of velocity difference, When a spatial distance is large, two velocities are statistically

LX)
independent and the kurtosin factor is reduced o § + ;;—E&;—-; . Stewart's plot shows a lownr

value than 3 asymptotieally, which indicates a lower kurtosls for velocity components,
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Fig. 10. (a) The energy spectra for the passive-vector equation under a frozen
randomn advecting velocity; (b) the dissipation rate of energy.

already observed (for isotropic turbulence, Métais and Lesieur, 1991; for a
mixing layer, Comte, Lesieur and Lamballais, 1991), and this may play an
important role in clarifying the mechanism of the intermittency growth.

3. Control of intermittency

We have seen that the developments of PDFs are intimately related to the
balance between advection and dissipation in turbulence. Thus intermittency
might be controllable if we can somehow adjust the balance. In order to
adjust the balance we propose two heuristic numerical methods. One would
input the helicity initially and the other would modify the Navier-Stokes
equation.

3.1. INITIAL HELICITY INPUT

Helicity is a conservative quantity for an inviscid flow which measures the
degree of knottedness of the vortex lines (Moffatt, 1969). As was suggested
by Kraichnan (1973), the helicity (or the partial alignment of velocity u
with vorticity w) reduces the effect of the nonlinearity u x w and depresses
the overall turbulent energy transfer. When a flow is viscous. the helicity
itself decays, and the decay rate of the ratio of the total helicity and the
total energy plays an important role. If the helicity can be sustained until
the peak time of enstrophy. there seems to be a significant effect on vortex
stretening.
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Helicity H in the k-space expression is

H =Y u(k)w(—k) =23 kur(k) x ui(k)] , ©)
k k

where u(k) = u,(k) + iu;(k) (Polifke, 1991). Thus, by adjusting the angles
between the real and imaginary vectors of complex velocities in the wave
space, we can input the helicity to the wave modes. To maintain the incom-
pressibility, first a set of real vectors is generated such that each veciu. is
perpendicular to a wave vector and is properly scaled for the energy spec-
trum. Then an imaginary vector, also perpendicular to the wave vector, is
formed making a given angle with the real vector.

Figures 8a and 8b show the enstrophy and the skewness factor und. “ree
different initial values of helicity. We observed that the peaks of the ct...ro-
phy and the skewness factor became lower and shifted downward with the
helicity input. The vortex stretching was eventually delayed and depressed.
In Fig. 9, the corresponding kurtosis factors are plotted. Though the kurtosis
factor was depressed at an early stage of development, it achieved a higher
value as a greater helicity was input initially. The result seems paradoxi-
cal because the helicity which was supposed to suppress generation of small
scales on the contrary enhanced intermittency. Further careful consideration
of the generation of (helical) structures is necessary by checking other types
of initial conditinns (for example. anisotropic, or structured), or by changing
the Reynolds number.
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3.2. MODIFIED NAVIER-STOKES EQUATION

As a tool to analyze the intermittency growth in Navier-Stokes turbulence,
we propose to study the following modifie? Navier-Stokes equation,

%% 4+ (v.¥).u=-aVp+vViu, (10)

Vv=0. (11)
The points of modification are surnmarized as follows:

—~ 1. The advecting velocity (v) and tiie advected velocity (u) are sepa-

rated. We have a variety of choices for v, such as,

(i) frozen velocity field in time,
(a) independent of u (random mixing),
(b) initial field of u(0),

(ii) refreshed after a period At (white noise approximation when At —
0).

(iii) velocity field governed by other equations.

— 2. A prefactor a is put before the pressure term,
(i) a = 0 (passive-vector equation),
(ii) @ = 1 (incompressible passive-vector equation).

tlere we concentrated only on cases in which v is frozen and independent
of u. (A detailed report is to be published soon, Kimura and Kraichnan.)
Figures 10a and 10b plot the enorgy spectra and the dissipation rate of
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energy. respectively, when a = 0 (passive vector equation). An obvious dif-
ference from those in the Navier-Stokes equation is that the slope of the
middle wave-range is less steep. In accordance with the observation about
the energy spectrum. which suggests a higger energy transfer from large to
small scales. the dissipation rate of energy shows a higher hump than the
previous case. In contrast with the Navier-Stokes turbulence, however, the
PDF of the components of u shows a much wider tail than in the Gaus-
sian distribution (Fig. 11a), and the PDF of the transverse gradients attains
even greater non-Gaussiarity (Tig. 11b). The non-Gaussianity of the passive-
vector equation as well as the passive-scalar equation are from a higher order
effect because the Gaussian distribution should be expected when there is
either only advection or diffusion. Research on the non-Gaussian distribu-
tion is still underway. As an example in which @ = 1 (incompressible passive
vector equation), we raise the PDF of the pressure in Fig. 12. The most sig-
nificant discrepancy from Fig. 7 is that the shape is symmetric, which may
manifest a different mechanism in produci.g different interrnittency.
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